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Spatial Transformations of Diffusion Tensor Magnetic
Resonance Images

D. C. Alexander*, Member, IEEE, C. Pierpaoli, P. J. Basser, and J. C. Gee

Abstract—We address the problem of applying spatial trans-
formations (or “image warps”) to diffusion tensor magnetic
resonance images. The orientational information that these images
contain must be handled appropriately when they are trans-
formed spatially during image registration. We present solutions
for global transformations of three-dimensional images up to
12-parameter affine complexity and indicate how our methods can
be extended for higher order transformations. Several approaches
are presented and tested using synthetic data. One method, the
preservation of principal direction algorithm, which takes into
account shearing, stretching and rigid rotation, is shown to be the
most effective. Additional registration experiments are performed
on human brain data obtained from a single subject, whose head
was imaged in three different orientations within the scanner. All
of our methods improve the consistency between registered and
target images over naïve warping algorithms.

Index Terms—Diffusion tensor magnetic resonance imaging,
DTI, DT-MRI, image processing, registration, spatial transforma-
tion, warp.

I. INTRODUCTION

D IFFUSION tensor magnetic resonance imaging
(DT-MRI) is an MRI modality, recently introduced

by Basseret al., [1], [2], which combines a NMR (nuclear
magnetic resonance) measurement of a diffusion tensor (DT) of
water and conventional MRI. The measurement made at each
voxel in a three-dimensional (3-D) DT-MR image is a sym-
metric second-order tensor, which describes the local diffusive
behavior of water at the corresponding point in the imaged
material. The DT may be represented by an ellipsoid describing
the root-mean-squared displacement in each direction from the
center of the voxel, [2], [3].

In this paper, we address the problem of applying spatial
transformations to DT-MR images, which are required for regis-
tration, [4], [5], and spatial normalization of collections of im-
ages. Compared to the task of warping scalar images, the ap-
plication of spatial transformations to DT-MR images is com-
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plicated by the fact that DTs contain orientational information,
which is affected by the transformation. This effect must be ac-
counted for in order to ensure the anatomical correctness of
the transformed image. In this paper, we present and test var-
ious methods for applying affine transformations to these im-
ages. We go on to show that, once a suitable method has been
devised for applying affine transformations to DT-MR images,
the extension to higher order transformations is straightforward.
Some preliminary work on this topic is described in [6] and
[7], in which an elastic matching algorithm, [8]–[10], was used
for inter-subject registration of DT-MR images of different sub-
jects. The adaptation of such algorithms to work with DT-MR
data remains the major motivation for the work described in this
paper, although the techniques described should be relevant to
any application in which tensor or vector images need to be pro-
cessed.

A brief introduction to the properties of DT-MR images is
provided in Section II. Then we discuss the problem of ap-
plying transformations to DT-MR images in Section III. Sev-
eral methods are proposed and we justify theoretically the use
of the PPD algorithm. Experiments to compare and validate the
proposed methods have been performed over both real and syn-
thetic DT-MR data sets. The design of the synthetic data sets,
which is described in full in [11], is reviewed in Section IV and
the experiments on this synthetic data and results obtained from
them are presented. In addition, three DT-MR data sets have
been obtained from a single human subject in different posi-
tions. An affine registration of the three images is obtained using
the automated image registration (AIR) program of Woodset
al., [12], [13]. The human data sets and experiments on them
are described in Section V. Finally, some concluding remarks
are made in Section VI.

II. FEATURES OF THEDIFFUSION TENSOR

The primary features of a DT that we need to account for
under a spatial image transformation of an image are the size,
shape, and orientation of its ellipsoid. These can be character-
ized by the eigenvalues, and and their corresponding
eigenvectors, and , from the DT, which can be written
as a 3 3 symmetric matrix, . Henceforyh, we will assume
that these eigenvalues are sorted so that is
the major eigenvector of the DT (the principal direction) and
is the minor eigenvector. The eigenvectors describe the orienta-
tion of the DT and the eigenvalues describe its size and shape.
The most common scalar indexes that are used to describe the
size and shape of the DT are , the anisotropy and the
skewness. These correspond to the first, second, and third mo-
ments, respectively, of the distribution of eigenvalues of, and
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(a) (b) (c)

Fig. 1. Illustration of the different shapes of DT ellipsoids and the corresponding distribution of eigenvalues. (a) Isotropic DT is represented by aspherical
ellipsoid; these measurements arise when diffusion is unhindered in all directions, as in regions of cerebro-spinal fluid (CSF) in the brain, or whenit is hindered
equally in all directions, as in grey matter, [14]. (b) Oblate DT is represented by a pancake shaped ellipsoid; this type of measurement can arise when tissue structure
is planar, such as when white matter fibers intersect within a voxel, [14]. (c) Prolate DT is represented by a cigar shaped ellipsoid; this type of measurement arises
when diffusion is hindered in two perpendicular directions, such as in white matter fiber tracts, [14].

(a) (b) (c)

Fig. 2. (a)Trace(D), (b) RA, and (c) skewness maps from the one axial slice of a DT MR image acquired from the brain of a healthy, human volunteer. The
Trace(D) map is hyperintense in regions of CSF where the total amount of diffusion is largest. The RA map is hyperintense in regions of white matter. The
skewness map is hyperintense in regions ofprolate anisotropic diffusion and hypointense in regions ofoblatediffusion, both of which occur in white matter
regions.

are independent of orientation, [16], [17]. is the sum
of the eigenvalues and describes the size of the DT; a related
index, which we will use later, is , which is the average of
the three eigenvalues, equal to .

The anisotropy is a measure of the variance of the eigen-
values, which measures the degree of directional bias in the
diffusion profile. Many measures of anisotropy have been pro-
posed and a review is provided in [15]. Here, we use the rela-
tive anisotropy (RA), which is given by

, [16], where “:” denotes the tensor scalar product
and is the identity matrix. DTs with high anisotropy can take
on a range of shapes. In general, their ellipsoids lie between two
extreme cases:prolate, or cigar-shaped, ellipsoids, which have
one large eigenvalue and two small ones ,
andoblate, or pancake-shaped, ellipsoids, which have two large
eigenvalues and one small one . Different
shaped DT ellipsoids are illustrated in Fig. 1. The skewness of
the eigenvalues can be used to distinguish between these two
cases—prolate DTs have positive skewness, while oblate DTs
have negative skewness, [17]. Fig. 2 shows , RA and
skewness maps derived from an axial slice of a DT-MR image
acquired from a healthy human volunteer.

III. SPATIAL TRANSFORMATIONS

In this section, we discuss the application of spatial transfor-
mations to DT-MR images. In order to preserve the integrity
of an image undergoing such a transformation, each DT must
be reoriented in such a way as to remain consistent with the
surrounding anatomical structure of the image. We begin with
the relatively straightforward problem of DT reorientation
during rigid transformations. We then discuss the more com-
plex problem of computing the appropriate reorientation under
affine transformations of the image volume.

Threereorientation strategiesare proposed, which provide
estimates of the transformation that must be applied to each DT.
We finish this section by showing how the methods described for
affine transformations can be extended for higher order image
transformations.

A. Rigid Transformations

The problem of applying transformations to tensor images
is illustrated in Fig. 3, where a rigid, 45rotation is applied
to a single axial slice of a DT-MR image of the human brain.
Fig. 3(a) shows a vector field derived from such an image slice.
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Fig. 3. Illustration of the requirement for DT reorientation. A vector field indicating the direction ofe in anisotropic regions is shown for one particular slice of
a DT-MR image. (a) Shows the original slice. (b) Shows the slice after a 45rotation is applied, but no DT reorientation is performed. (c) Shows the slice after a
45 rotation is applied with DT reorientation.

If we apply the rotation naively to the image and simply copy
the value at each pixel in the transformed image from the cor-
responding position in the original image, as we would for a
scalar image, we obtain the result shown in Fig. 3(b). The lines
within the corpus callosum indicated on the image no longer
point along the pathway, as they did in the original image and
as they should in the transformed image if the DTs are to be
consistent with the anatomical structure. Clearly, the DTs them-
selves need to be rotated similarly and this can be achieved by
applying the same rigid rotation matrix to each DT in the image
via a similarity transform. Thus, if is the rotation matrix rep-
resenting the image transformation, each DT,, is replaced by

, where

(1)

In Fig. 3(c), (1) has been applied at every voxel and the DT
orientations are now consistent with the anatomy. Note that (1)
does not change the size or shape of the DT, i.e., the eigen-
values are preserved, and only the orientation (eigenvectors) is
affected.

B. Affine Transformations

When the transformation applied to the image is rigid, as in
the example shown in Fig. 3, it is straightforward to determine
the required reorientation of the DTs, as described above. In
general, however, we need to extend the method to cope with
higher order transformations. In this section, we discuss the
problem of applying affine transformations and consider three
potential methods for computing an appropriate reorientation
for each DT.

An affine transformation consists of a vector,, which de-
scribes a rigid translation, and a linear transformation matrix,

. The image of a DT, , under is given by . Unlike
the case of rigid rotation, however, we cannot simply replace
each by the transformed matrix, . In general,
has different size and shape (eigenvalues) than. When a trans-
formation is applied to a DT-MR image, we expect the shape of
regions in the image to change, but the underlying tissue mi-
crostructure in those regions does not. Only the orientation of

the tissue microstructure can change. Thus, we wish to preserve
the size and shape of the DTs in the image, which reflect the
properties of the tissue microstructure, but reorient them in a
way consistent with the reorientation of the tissue caused by the
transformation. Thus, we seek a rigid rotation matrix,, at each
point in the image, which reflects the local reorientation of the
image that occurs as a consequence of. can then be used to
reorient the DT at that point via the similarity transform given
in (1).

1) Strategy 1—No Reorientation (NR):The simplest pos-
sible strategy is to ignore the problem of reorientation by ap-
plying no rotation to the DTs in the image, or equivalently to set

equal to the identity at every voxel. The value at each point in
the transformed image is copied directly from the corresponding
position in the untransformed image, as we would do for a scalar
image.

This reorientation strategy, the NR strategy, is included here
as a control or yardstick against which to measure the effective-
ness of the less naïve warping strategies described below.

2) Strategy 2—Finite Strain (FS):Any nonsingular can
be decomposed into a rigid rotation component,, and a defor-
mation component, , [19], where

(2)

One strategy for DT reorientation in an image undergoing
transformation , is to extract the rigid rotation component of
the transformation, in (2), and apply it to each DT in the image
using (1). The rotation matrix is straightforward to extract
from and is given by [19]

(3)

needs to be computed only once and is constant over the en-
tire image. We call this reorientation strategy the FS strategy, be-
cause the decomposition given by (2) holds for any affine trans-
formation inducing arbitrary, but finite, strain on the material to
which it is applied, [19]. When the amount of strain induced by
the transformation is small, there is a simple linear approxima-
tion to the FS decomposition that can be used to speed up the
computation of , see [7], [19].
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Fig. 4. Illustration of the dependency on image structure direction of the amount of reorientation due to deformative transformations. Vertical andhorizontal
stretch and shear are applied to three images with similar structure but different orientation. The resulting structure is similar but with different orientation and
the amount of change in orientation is dependent on the original orientation of the image structure. For example, the vertical shear changes the direction of the
horizontal fibers, but not the direction of the vertical ones.

3) Strategy 3—Preservation of Principal Direction:A
drawback of the FS reorientation strategy is that the deforma-
tion component of the affine transformation is discarded and
does not contribute to the estimated reorientation. Deformation
includes transformations such as shearing and nonuniform
scaling or stretching, which also affect the orientation of the
underlying image (or tissue) structure, but in a more complex
way than rigid rotation. In general, the reorientation that occurs
as a consequence of these types of transformation depends on
the original orientation of this structure. This is illustrated in
Fig. 4, where three images, with strongly directional structure
reflecting a portion of an image through which parallel tissue
fibers are running, are stretched and sheared. The resulting
change in orientation of the fibers can be seen to be dependent
on their original direction.

An alternative reorientation strategy is proposed in this sec-
tion, in which we directly examine the effects of the transforma-
tion on the eigenvectors of the DT at each point. We adopt the
assumption that the directionality of the tissue structure corre-
sponds to the direction of the eigenvectors of the DT [20], [21].

In prolate regions, the direction of the tissue fibers is charac-
terized by . The direction of the fibers after the transformation
can be found by applying the transformation directly toand
renormalizing to obtain a new unit vector,

(4)

So, we require a rotation to apply to that maps to .
In oblate regions, the plane of tissue structure is characterized

by and . The affine transformation maps this plane to a new
plane containing and . So we require a rotation for

that ensures that the new and span the same plane as
and .

In fact, we can take care of both these requirements in a single
method, which we call the preservation of principal direction
(PPD) reorientation strategy. A step-by-step outline of the PPD
method is given in the Appendix. Briefly, we choose the rotation
matrix, , which maps to and to a unit vector perpen-
dicular to in the plane spanned by and , where is
defined in a similar way to by replacing with in (4).

The PPD algorithm preserves the principal direction of the
DT through the transformation as well as the plane of the first
two eigenvectors and so is effective for both prolate and oblate
DTs as well as for intermediate DTs for which .
For prolate DTs, the mapping of is unimportant, since is
poorly defined. Similarly, for oblate DTs, it is not essential that
the new lies exactly along so long as it and the new
lie in the plane spanned by and . For intermediate DTs,
however, both parts of the transformation are important.

Note that in this scheme, the DT reorientation is not constant
over the image for general affine transformations, unlike the FS
strategy, and a separatemust be computed at each voxel.

C. Higher Order Transformations

Once an effective reorientation strategy has been established
for affine transformations, the extension to higher order trans-
formations is straightforward. Any image transformation,,
can be expressed as a displacement field, , over the image,
so that for each position in the original image,

. If is an affine transformation, then we also have that
, as described in Section III-B. If we differen-

tiate these two expressions, with respect to, we can see that
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, where is the identity matrix and is the Ja-
cobian of the displacement field. From this, we obtain a local
affine model of the more complex transformation by taking
to be equal to at each point, . An appropriate reorien-
tation matrix can then be computed separately at each, from

, using the methods described earlier.

IV. SYNTHETIC DATA EXPERIMENTS

In this section, we describe a set of experiments performed
using synthetic data, which test the validity of the approaches
described in Section III. The synthetic data sets are 3-D DT ar-
rays derived from a numerical phantom containing various ob-
jects that represent different anatomical features of the human
brain. The phantom is rendered to a discrete 3-D DT data set by
dividing up the space in which it is defined into a discrete voxel
grid, assigning membership of each voxel to a particular object
of the phantom and, thus choosing an appropriate DT to put in
the voxel. No partial volume effects are introduced during ren-
dering.

All of the objects in the phantom are constructed from points,
lines, planes and ellipsoids, all of which are invariant under
affine transformations, i.e., lines are mapped to lines, planes
to planes, and ellipsoids to ellipsoids. Given such a numerical
phantom and an affine transformation, there are two ways that
we can obtain a data set containing a transformed version of the
phantom.

• We can render the phantom to a 3-D DT array and then
apply the affine transformation, using one of the reorien-
tation strategies described in Section III.

• We can apply the transformation to the numerical phantom
and then render the transformed phantom to a DT array.

Ideally, both methods should produce identical results. The
second approach can be used to obtain “gold standard” data sets
describing the transformed object. Data sets obtained using the
first approach can be compared with the gold standard in order
to test the effectiveness of the reorientation strategy.

In this section, we first review the construction of our numer-
ical phantom and the synthetic DT data sets. Then, we describe
the measures that we use to compare a transformed data set to
the gold standard in order to obtain a performance index for a
particular reorientation strategy. Finally, we describe the set of
experiments that has been performed and present the results.

A. Synthetic Data Sets

A full description of the numerical phantom and the construc-
tion of synthetic data sets can be found in [11]. These data sets
are 3-D DT arrays with an in-plane matrix size 128128 and
37 slices. The voxel dimensions are assumed to be 1.71.7
3.5 mm , which is the same as the voxels in the human data sets
described in Section V.

There are four different types of tissue represented in the
phantom, which are contained in separate regions of the array.
Some slices through one of these data sets are shown in Fig. 5,
which contains labels indicating the tissue types contained
in each region. The DTs selected for different compartments
within the phantom are representative of one of the four tissue

Fig. 5. One coronal (left) and three axial (right) slices through a rendered
version of the numerical phantom. The upper axial slice passes through the
ellipsoidal region that represents oblate white matter. The middle axial slice
passes through the two ellipsoidal regions that represent the ventricles and
contain large isotropic DTs. The bottom axial slice passes through the lower
portion of the Y-shaped structure that contains prolate DTs and represents
white matter fibers, such as the cortico-spinal tract.

types. They are drawn from statistical distributions based on
the measurements made by Pierpaoliet al., [14], on DT-MR
images acquired from human subjects in a MR scanner. The
distributions used are summarized in Table I and described in
detail in [11].

In Table I, the major eigenvector, , in prolate regions is la-
beled “fixed,” because it is constant rather than being drawn
from a statistical distribution. The prolate region of the syn-
thetic data sets consists of the Y shaped structure in the lower
portion of the volume. This region is comprised of two pairs of
cylindrical regions. Each pair of cylinders has one end point in
common. The major eigenvector of every DT contained in a par-
ticular cylinder is parallel to the line joining the two endpoints
of that cylinder. The minor eigenvector,, of DTs in the oblate
region is also “fixed.” The underlying tissue structure for this
region is planar and a unit vector,, is defined in connection
with this region that is the normal to the plane of tissue struc-
ture. Every in the oblate region is set equal to.

B. Comparative Measures

In order to assess the reorientation strategies, we look at the
relative orientations of DTs in corresponding locations in the
transformed data set and the gold standard. In particular, we
look at the angular separation of the principal axes of DTs in
corresponding locations. To measure the angular separation of
the major axes of two DTs, for example, we compute the cosine
of the angle between the twos by taking the absolute value
(since we are dealing with axes) of their scalar product. The
cosine is inverted to give an angle between zero and.

The eigenvectors are less well defined in more isotropic DTs,
which causes the angular separation to be a less meaningful
measure. For this reason, when the average angular separation is
calculated over a particular region, we down-weight the contri-
bution of more isotropic DTs. This is achieved by weighting the
contribution to the average of each pair of DTs by the geometric
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TABLE I
SUMMARY OF THE PARAMETERSUSED TOSELECT DTS FOREACH VOXEL IN THE SYNTHETIC DATA SETS. EACH EIGENVALUE AND EIGENVECTORIS DRAWN FROM

A STATISTICAL DISTRIBUTION DEPENDING ON THEREGION TO WHICH THE DT BELONGS. N(a; b) INDICATES A NORMAL DISTRIBUTION WITH MEAN A AND

STANDARD DEVIATION b. U IS A UNIFORM DISTRIBUTION ON THE SURFACE OF THEUNIT SPHERE IN THREE DIMENSIONS. U (n) IS A

UNIFORM DISTRIBUTION OF DIRECTIONSPERPENDICULAR TOUNIT VECTORn

mean of their RA values. Thus, over some set,, of image loca-
tions the average angular separation with respect to , is
given by

(5)

In (5), and denote the RA of the two DTs at a particular
location; and denote the th principal axes of the two
DTs. The downweighting of more isotropic data is not crucial
in the synthetic data experiments, where the anisotropy is quite
consistent within separate regions, but is important in the human
data experiments described in the next section.

Here, we compute both , which is meaningful in re-
gions of prolate DTs, and , which is meaningful in regions
of oblate DTs.

C. Experiments

A series of experiments was performed on a single numer-
ical phantom. Random affine transformations were generated
and applied to the phantom both before and after rendering. For
each affine transformation, a gold standard of the transformed
phantom is obtained, as well as a transformed data set of the
original phantom using each reorientation strategy. Each trans-
formed data set is then compared to the gold standard in order to
assess the performance of the different reorientation strategies.

In order to generate random affine transformations, we
parametrise the group as follows:

(6)

In (6), is a nonuniform scaling matrix, given by
is a shearing transformation,

which shears by different amounts in three perpendicular
directions and is given by the matrix

(7)

and is a rotation through angle about axis . Equation (6)
is equivalent to the affine decomposition in (2) with MS equal
to . , and are drawn from , a uniform
distribution on the interval is drawn from a uniform
distribution on the unit sphere (see [11] and [18]); and

are all drawn from .
Ten random affine transformations were generated and

applied to the phantom in this way. The transformed data sets
are resampled using a nearest neighbor approach (in order to
avoid artifacts that might be introduced by using a less basic
tensor interpolation) to select the value at each voxel. Each
transformed data set was compared to the corresponding gold
standard; and were computed for each reorienta-
tion strategy and averaged over those ten transformations. The
averaged measures are plotted in Fig. 6. In Fig. 6, an additional
column (labeled Ex. in the figures) is included for each of the
individual regions, which indicates the expected value of each
measure. These expected values were computed empirically
by drawing pairs of DTs from the distributions corresponding
to each separate region, see Table I and [11], and taking the
average similarity over a large number of pairs.

D. Discussion

The plotted results show that for these data sets the PPD
warping strategy is consistently the most effective and produces
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(a)

(b)

Fig. 6. Plot of (a)E(e ) and (b)E(e ) averaged over various regions of the
numerical phantom images within ten pairs of transformed data sets. From left
to right: “GM” refers to the average over “grey matter” regions, i.e., the interior
of the brain volume excluding the “ventricles” and regions of oblate and prolate
diffusion. “Ventricles” refers to the average over the two ellipsoidal regions of
large isotropic diffusion. “WM-prol” refers to the average within the Y-shaped
region of prolate diffusion. “WM-obl” refers to the average within the ellipsoidal
region of oblate diffusion.

similarity measures almost identical to the ideal (expected)
values in all cases.

The ideal value of is zero in the prolate region, as is
that of in the oblate region. Furthermore, these measures
should have zero variance in those regions, since no noise is
added to in the prolate region or in the oblate region, which
allows them to be matched perfectly. In the isotropic, CSF, and
grey matter regions, the ideal value of is the expected
angle between two uniformly randomly chosen axes in three di-
mensions. This value has not been computed analytically, but
the empirically determined value is around 60. Similarly, for

in the region of oblate DTs and in the regions
of prolate DTs, the ideal value is equal to the expected angle
between two uniformly randomly chosen axes in two dimen-
sions. The empirically determined value for this expected value
is around 50. Large variances of both measures are expected in
isotropic regions, since and are uniformly distributed on
the sphere. Similarly, we can expect large variance of in
the prolate region and in the oblate region.

As expected, the NR strategy produces transformed data sets
in which the DT orientations are inconsistent with the gold stan-
dard in anisotropic (prolate and oblate) regions. The variance
of the significant measures in anisotropic regions is increased,
because the different transformations cause different amounts
of discrepancy in orientation. Reorientation has little effect in
isotropic regions, so the comparative measures are close to the
ideal values for all strategies.

The FS strategy also yields inconsistency in DT orientations.
In the prolate region, it improves on the NR strategy but
does not meet the ideal value of zero, indicating residual mis-
alignment of DTs. Moreover, FS in fact performs worse on av-
erage than NR in the oblate region, in terms of the significant
measure, , although the variance is lower. FS can have
a detrimental effect when, for example, we apply a shearing
transformation along the structural planes in the oblate region.
A shear perpendicular to the axis (e.g., in (7), 30 ,

0 ), has no effect on the orientation of the tissue
structure plane, which is originally aligned perpendicular to the

axis. NR is, thus, correct in this example, whereas FS rotates
all DTs through approximately 16about the axis.

Only the PPD strategy manages to transform all the DTs so
that their orientation is consistent with those in the gold stan-
dard. The variance of the significant measures in anisotropic
regions is zero, which is consistent with the ideal value, since
there is no variance in the significant eigenvector directions in
these regions.

V. HUMAN DATA EXPERIMENTS

In order to test our reorientation strategies on DT-MR data
acquired from a scanner, three data sets were acquired from a
healthy 42-year-old male volunteer. These data sets and the ex-
periments performed on them are described in this section.

A. Human DT-MRIs

The coordinate system of these acquisitions reflects the one
used for the synthetic data sets: theaxis increases from the
right to left sides of the head, theaxis increases back to front
and the axis increases bottom to top. One data set was ac-
quired with the head positioned normally in the scanner so that
the inter-hemispheric fissure is parallel to theplane and the
anterior-posterior commissural line is almost aligned with the

axis. A second data set was acquired with the head in axially
rotated position—rotated through approximately 25about the

axis, and a third with the head in extended position—rotated
through approximately 10about the axis.

The methodology for image acquisition and DT processing is
similar to that reported in [22]. Briefly, images of 42 contiguous
axial slices were acquired using a 1.5-T GE Signa Horizon
EchoSpeed spectrometer. Slice thickness was 3.5 mm, field of
view 220 165 mm, and in-plane matrix size 12896, which
gives rise to an in-plane voxel size of 1.71.7 mm. A total
of 21 images were acquired per slice including three diffusion
weighted images per direction with gradients applied in six
different directions, [14], and three images with no diffusion
weighting. The DT was computed in each voxel according to
the method proposed by Basseret al., [1]. Acquisition of each
data set took roughly 35 min.

B. Experiments

Affine transformations of the axially rotated and extended
position images were computed in order to register them with
the image in normal position. These affine transformations were
computed by applying Woods’ AIR program, [12], [13], to RA
maps from each of the three images. The two images were then



1138 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 11, NOVEMBER 2001

(a)

(b)

Fig. 7. Plots of (a)E(e ) and (b)E(e ) averaged over various anatomical
regions (see text) of the human data sets after registration of the three images.

transformed into alignment with the normal position image
using each reorientation strategy described in Section III. As
in the synthetic data experiments, nearest neighbor resampling
was used in each case.

Five regions of interest (ROIs) were outlined on the normal
position image. Each is a subregion of a particular anatomic re-
gion of the image, drawn carefully so thatonlypixels from that
anatomic region are contained in the set of points comprising
that region of interest. The anatomic regions used are the fol-
lowing:

• ventricles (CSF);
• subcortical nuclei (grey matter);
• cortico-spinal tract (prolate white matter);
• corpus callosum (prolate white matter);
• subcortical white matter (oblate white matter).

The region of oblate diffusion was obtained by identifying re-
gions on the skewness map of the normal position image, which
contain predominantly DTs with negative skewness. The slice
containing the largest of these regions is the slice shown in
Fig. 2, where the large region of oblate diffusion can be seen
on the left-hand side of the image.

Within each of the hand drawn ROIs, the DTs at corre-
sponding positions were compared using and , see
Section IV-B, as in the synthetic data experiments. Averages
were computed over each region for images transformed using
each separate reorientation strategy. These average measures
are plotted in Fig. 7.

C. Discussion

In the regions of isotropic diffusion, similar values of
and are observed as were found in the synthetic data ex-
periments. Values of both measures are slightly reduced, which
suggests that there may be some coherence of DT orientation in
these regions. This idea is reinforced by the fact that FS and PPD
further reduce the measures in comparison to NR. It is unclear
whether this directional coherence is due to structural coherence
in these regions of the brain, or whether this is some artifact of
the imaging process.

Both FS and PPD improve in the regions of prolate dif-
fusion and the improvement is particularly marked in the corpus
callosum. However, for these data sets, the results appear to be
almost identical for these two strategies. Examination of the
affine transformation matrices computed for registration of the
images reveals that the largest deformative component in either
transformation has a reorientational effect of less than 0.1. This
means that the transformations between the images are almost
perfectly rigid and so the advantages of PPD over FS are not
revealed. A further consequence of this is that the variances of

and are independent of reorientation strategy and
are purely dependent on the variances ofand in the orig-
inal data. Notice that there is some improvement in in
both prolate regions when reorientation is performed. DTs in
these regions are not perfectly prolate, so , and
there is some consistency in as well as .

Finally, in the region of oblate diffusion, we observe some
improvement in through use of reorientation. The im-
provement is less marked than in the prolate regions, because
the anisotropy of these oblate DTs is much lower than those in
the prolate regions. The eigenvector directions are therefore less
clearly defined and so exhibit less consistency between corre-
sponding regions in the images.

VI. CONCLUSION

When transformations are applied to a DT-MR image, ac-
companying reorientation of the data is required in order to pre-
serve the consistency of the data with respect to the anatomic
structure of the image. For rigid rotation and/or uniform scaling,
the transformation matrix, normalized for scaling, can be ap-
plied directly to each DT in the image, via a similarity trans-
form, in order to perform the necessary reorientation.

For more general affine transformations, an appropriate rota-
tion has to be derived from the affine transformation to be ap-
plied to each DT. We have presented two possible methods for
finding such a rotation and discussed their relative merits. One
method, referred to as the FS reorientation strategy, decomposes
the transformation into a rigid rotation and a pure deformation
operations and uses the rigid rotation component for reorienta-
tion. The other, called the PPD is a reorientation strategy that
takes into account and compensates for the additional reorien-
tation caused by image deformation.

We have shown that, over the synthetic data sets described in
Section IV, the latter, PPD method is an effective reorientation
strategy. However, there are problems associated with FS, be-
cause it does not allow the amount of reorientation to vary over
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the image. The reorientation strategies were also tested within
an intra-subject human study. In this study, however, the trans-
formation between different images is very nearly rigid and so,
although both our methods are shown to be effective, the ben-
efits of the PPD strategy, which is designed to accommodate
the reorientational effects of the nonrigid part of the transforma-
tion, are not observed. However, these experiments verify that
it is essential to employ a reorientation strategy, such as those
proposed, in order to ensure the anatomical correctness of the
transformed image.

For other tasks, such as registration of images from different
subjects or deformable tissue, such as the heart or the spinal
cord, higher order transformations are necessary. In such situa-
tions, we do not expect the FS strategy to be effective and PPD,
or some similar technique, must be used. In addition to affine
transformations, we have shown how the same methods can be
used in conjunction with higher order transformations, such as
those obtained from, for example, an elastic or nonlinear poly-
nomial registration algorithm. Experiments to validate the use
of the PPD method within such transformations are the focus of
current investigations.

Alternatives to the PPD strategy can be envisaged, in partic-
ular, we note the connection between the estimation of appro-
priate reorientation transformations and the weighted orthog-
onal Procrustes problem, [23]. There are existing solutions to
this problem, which might be used to compute reorientation ma-
trices, but it is not clear how the relative importance of the axes
should be weighted in noisy DT-MR data. Such possibilities will
be investigated in future work. We note that our FS method is
equivalent to the standard, singular value decomposition solu-
tion to the (unweighted) orthogonal Procrustes problem.

APPENDIX

Given a linear transformation matrix,, and a DT, , the
PPD method proceeds as follows:

• Compute unit eigenvectors, , of .
• Compute unit vectors and in the directions of

and .
• Compute a rotation matrix, , that maps onto . The

axis, , and angle, , of this rotation are obtained from the
vector and scalar products of and .

A secondary rotation, about , is required to map from
its positionafter the first rotation, , to the – plane.

• Find the projection, , of onto a plane perpendic-
ular to —the new major eigenvector, . Note that:

a) already lies in this plane, since and are
orthogonal.

b) , lies in the plane spanned
by and .

• Compute a second rotation, , that rotates onto
a unit vector in the direction of . The axis of this
rotation is and the angle is obtained from the dot
product of with .

• Set and reorient using (1).
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